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Anharmonic oscillators energies via artificial perturbation method
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Abstract. A new pseudoperturbative (artificial in nature) methodical proposal [15] is used to solve for
Schrödinger equation with a class of phenomenologically useful and methodically challenging anharmonic
oscillator potentials V (q) = αoq

2+αq4. The effect of the [4,5] Padé approximant on the leading eigenenergy
term is studied. Comparison with results from numerical (exact) and several eligible (approximation)
methods is made.
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Semiclassical theories and applications

1 Introduction

Quartic anharmonic interactions continue to remain a fo-
cus of attention. Their Hamiltonian

H =
p2

2m
+ α0r

2 + αr4 (1)

forms one of the most popular theoretical laboratories
for examining the validity of various approximation tech-
niques and represents a nontrivial physics. Interest in this
model Hamiltonian arises in quantum field theory and
molecular physics [1–6].

Although enormous progress has been made over the
years in our understanding of this Hamiltonian, questions
of delicate nature inevitably arise in the process. The hard-
est amongst often relate to the existence of the assumed
small expansion parameter and the universality of an ad-
equately attendant powerful approximation. The imple-
mentation of Rayleigh-Schrödinger perturbation theory,
or even naive perturbation series, expresses the eigenval-
ues as a formal power series in α which is quite often
divergent, or at best asymptotic, for every α 6= 0. One
has therefore to sum up such series [7–10]. Hence, appar-
ently artificial perturbation recipes have been devised and
shown to be ways to make progress [2,3,11–16]. Without
being exhaustive, several eligible methods have been used
to calculate the eigenvalues and eigenfunctions for Hamil-
tonian (1). Long lists of these could be found in refer-
ences [2,3,8–10,13,17–19].

In this paper we introduce, in Section 2, a new analyt-
ical (or, preferably, semianalytical) perturbation method
for solving Schrödinger equation. The construction of
which starts with the time-independent one-dimensional
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form of Schrödinger equation, in ~ = m = 1 units,[
−1

2
d2

dq2
+
l(l + 1)

2q2
+ V (q)

]
Ψnr,l(q) = Enr ,lΨnr,l(q),

(2)

where l is some quantum number and nr counts the nodal
zeros in Ψnr ,l(q). The symmetry of an attendant problem
obviously manifests the admissibility of the quantum num-
ber l: in one-dimension (1D), l specifies parity, (−1)l+1,
with the permissible values −1 and/or 0 (even and/or odd
parity, respectively) where q = x ∈ (−∞,∞). For two-
dimensional (2D) cylindrically symmetric Schrödinger
equation one sets l = |m| − 1/2, where m is the mag-
netic quantum number and q = (x2 + y2)1/2 ∈ (0,∞).
Finally, for three-dimensional (3D) spherically symmetric
Schrödinger equation, l denotes the angular momentum
quantum number with q = (x2 + y2 + z2)1/2 ∈ (0,∞).

We shall focus our attention, in Section 3, on 1D and
3D problems and consider, for the sake of diversity;

(i) 3D anharmonic oscillators V (r) = r2/2 + r4/2 with
nr = 0 and l = 0, 1, 2, 5, 10, 50,

(ii) 3D ground state, or equivalently 1D first excited
(odd-parity) state, for anharmonic oscillators V (q) =
q2/2 +αq4 over a wide range of anharmonicities (i.e.
α = 0.002 to α = 20000),

(iii) 3D single-well anharmonic oscillator ground state,
or equivalently 1D double-well anharmonic oscillator
first excited state, for V (q) = −aq2/2 + q4/2 at vari-
ous well depths (i.e. a = 1, 5, 10, 15, 25, 50, 100).

For the sake of comparison, we use results from exact nu-
merical methods reported in [2,5], the best estimation of
the phase-integral method (PIM) [5], an open perturba-
tion technique [2], and a perturbative-variational method
(PVM) [6]. Section 4 is reserved for concluding remarks.
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2 The method

Our methodical proposal uses 1/l̄ as a perturbation ex-
pansion parameter, where l̄ = l − β and β is a suitable
shift mainly introduced to avoid the trivial case l = 0.
Hence, hereafter, it will be referred to as the pseudopertur-
bative (artificial in nature) shifted-l expansion technique
(PSLET). Equation (2) thus becomes

{
−1

2
d2

dq2
+ Ṽ (q)

}
Ψnr,l(q) = Enr,lΨnr,l(q), (3)

Ṽ (q) =
l̄2 + (2β + 1)l̄ + β(β + 1)

2q2
+
l̄2

Q
V (q). (4)

Herein, it should be noted that Q is a constant that scales
the potential V (q) at large-l limit and is set, for any spe-
cific choice of l and nr, equal to l̄2 at the end of the calcu-
lations [11,16]. And, β is to be determined in the sequel.

PSLET procedure begins with shifting the origin of
the coordinate through

x = l̄1/2(q − qo)/qo, (5)

where qo is currently an arbitrary point to perform Taylor
expansions about, with its particular value to be deter-
mined. Expansions about this point, x = 0 (i.e. q = qo),
yield

1
q2

=
∞∑
n=0

(−1)n
(n+ 1)
q2
o

xn l̄−n/2, (6)

V (x(q)) =
∞∑
n=0

(
dnV (qo)

dqno

)
(qox)n

n!
l̄−n/2. (7)

Obviously, the expansions in (6, 7) center the problem
at an arbitrary point qo and the derivatives, in effect,
contain information not only at qo but also at any point
on q-axis, in accordance with Taylor’s theorem. Also it
should be mentioned here that the scaled coordinate,
equation (5), has no effect on the energy eigenvalues,
which are coordinate-independent. It just facilitates the
calculations of both the energy eigenvalues and eigenfunc-
tions. It is also convenient to expand E as

Enr ,l =
∞∑

n=−2

E
(n)
nr ,l

l̄−n. (8)

Equation (3) thus becomes

[
−1

2
d2

dx2
+
q2
o

l̄
Ṽ (x(q))

]
Ψnr,l(x) =

q2
o

l̄
Enr ,lΨnr,l(x), (9)

with

q2
o

l̄
Ṽ (x(q)) = q2

o l̄

[
1

2q2
o

+
V (qo)
Q

]
+l̄1/2

[
−x+

V
′
(qo)q3

ox

Q

]

+

[
3
2
x2+

V
′′
(qo)q4

ox
2

2Q

]
+(2β+1)

∞∑
n=1

(−1)n
(n+1)

2
xn l̄−n/2

+q2
o

∞∑
n=3

[
(−1)n

(n+1)
2q2

o

xn+
(

dnV (qo)
dqno

)
(qox)n

n!Q

]
l̄−(n−2)/2

+ β(β + 1)
∞∑
n=0

(−1)n
(n+ 1)

2
xn l̄−(n+2)/2 +

(2β + 1)
2

,

(10)

where the prime of V (qo) denotes derivative with respect
to qo. Equation (9) is exactly of the type of Schrödinger
equation for one-dimensional anharmonic oscillator[
−1

2
d2

dx2
+

1
2
w2x2 + εo + P (x)

]
Xnr(x) = λnrXnr (x),

(11)

where P (x) is a perturbation-like term and εo is a con-
stant. A simple comparison between equations (9, 10, 11)
implies

εo = l̄

[
1
2

+
q2
oV (qo)
Q

]
+

2β + 1
2

+
β(β + 1)

2l̄
, (12)

λnr = l̄

[
1
2

+
q2
oV (qo)
Q

]
+
[

2β + 1
2

+
(
nr +

1
2

)
w

]

+
1
l̄

[
β(β + 1)

2
+ λ(0)

nr

]
+
∞∑
n=2

λ(n−1)
nr l̄−n, (13)

and

λnr = q2
o

∞∑
n=−2

E
(n)
nr ,l

l̄−(n+1). (14)

Equations (13, 14) yield

E
(−2)
nr ,l

=
1

2q2
o

+
V (qo)
Q

(15)

E
(−1)
nr ,l

=
1
q2
o

[
2β + 1

2
+
(
nr +

1
2

)
w

]
(16)

E
(0)
nr ,l

=
1
q2
o

[
β(β + 1)

2
+ λ(0)

nr

]
(17)

E
(n)
nr ,l

= λ(n)
nr /q

2
o; n ≥ 1. (18)
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Here qo is chosen to minimize E(−2)
nr ,l

, i.e.

dE(−2)
nr,l

dqo
= 0 and

d2E
(−2)
nr ,l

dq2
o

> 0. (19)

Hereby, V (q) is assumed to be well behaved so that E(−2)

has a minimum qo and there are well-defined bound-states.
Equation (19) in turn gives, with l̄ =

√
Q,

l − β =
√
q3
oV
′(qo). (20)

Consequently, the second term in equation (10) vanishes
and the first term adds a constant to the energy eigenval-
ues. It should be noted that energy term l̄2E

(−2)
nr ,l

has its
counterpart in classical mechanics. It corresponds roughly
to the energy of a classical particle with angular momen-
tum Lz = l̄ executing circular motion of radius qo in
the potential V (qo). This term thus identifies the leading-
order approximation, to all eigenvalues, as a classical ap-
proximation and the higher-order corrections as quantum
fluctuations around the minimum qo, organized in inverse
powers of l̄. The next leading correction to the energy
series, l̄E(−1)

nr ,l
, consists of a constant term and the exact

eigenvalues of the unperturbed harmonic oscillator poten-
tial w2x2/2. The shifting parameter β is determined by
choosing l̄E(−1)

nr ,l
= 0. This choice is physically motivated.

It requires not only the agreements between PSLET eigen-
values and the exact known ones for the harmonic oscil-
lator and Coulomb potentials but also between the eigen-
functions. Hence

β = −
[

1
2

+
(
nr +

1
2

)
w

]
, (21)

where

w =

√
3 +

qoV
′′(qo)

V ′(qo)
· (22)

Then equation (10) reduces to

q2
o

l̄
Ṽ (x(q)) = q2

o l̄

[
1

2q2
o

+
V (qo)
Q

]
+
∞∑
n=0

v(n)(x)l̄−n/2,

(23)

where

v(0)(x) =
1
2
w2x2 +

2β + 1
2

, (24)

v(1)(x) = −(2β + 1)x− 2x3 +
q5
oV
′′′

(qo)
6Q

x3, (25)

and for n ≥ 2

v(n)(x) = (−1)n(2β + 1)
(n+ 1)

2
xn

+ (−1)n
β(β + 1)

2
(n− 1)x(n−2)

+

[
(−1)n

(n+ 3)
2

+
q

(n+4)
o

Q(n+ 2)!
dn+2V (qo)

dqn+2
o

]
xn+2.

(26)

Equation (9) thus becomes[
−1

2
d2

dx2
+
∞∑
n=0

v(n) l̄−n/2

]
Ψnr,l(x) =

[
1
l̄

(
β(β + 1)

2
+ λ(0)

nr

)
+
∞∑
n=2

λ(n−1)
nr l̄−n

]
Ψnr ,l(x). (27)

Up to this point, one would conclude that the above pro-
cedure is nothing but an imitation of the eminent shifted
large-N expansion (SLNT) [12,14,16,20–22]. However, be-
cause of the limited capability of SLNT in handling large-
order corrections via the standard Rayleigh-Schrödinger
perturbation theory, only low-order corrections have been
reported, sacrificing in effect its preciseness. Therefore,
one should seek for an alternative and proceed by setting
the nodeless, nr = 0, wave functions as

Ψ0,l(x(q)) = exp(U0,l(x)). (28)

In turn, equation (27) readily transforms into the following
Riccati equation ([2,3] and references therein):

− 1
2

[U
′′
(x) + U

′
(x)U

′
(x)] +

∞∑
n=0

v(n)(x)l̄−n/2 =

1
l̄

(
β(β + 1)

2
+ λ

(0)
0

)
+
∞∑
n=2

λ
(n−1)
0 l̄−n. (29)

Hereafter, we shall use U(x) instead of U0,l(x) for simplic-
ity, and the prime of U(x) denotes derivative with respect
to x. It is evident that this equation admits solution of
the form

U
′
(x) =

∞∑
n=0

U (n)(x)l̄−n/2 +
∞∑
n=0

G(n)(x)l̄−(n+1)/2, (30)

where

U (n)(x) =
n+1∑
m=0

Dm,nx
2m−1; D0,n = 0, (31)

G(n)(x) =
n+1∑
m=0

Cm,nx
2m. (32)
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− 1
2

∞∑
n=0

[
U (n)

′

l̄−n/2 +G(n)
′

l̄−(n+1)/2
]
− 1

2

∞∑
n=0

∞∑
p=0

[
U (n)U (p) l̄−(n+p)/2 +G(n)G(p) l̄−(n+p+2)/2 + 2U (n)G(p) l̄−(n+p+1)/2

]
+
∞∑
n=0

v(n) l̄−n/2 =
1
l̄

(
β(β + 1)

2
+ λ

(0)
0

)
+
∞∑
n=2

λ
(n−1)
0 l̄−n (33)

Substituting equations (30–32) into equation (29) implies

see equation (33) above,

where primes of U (n)(x) and G(n)(x) denote derivatives
with respect to x. Equating the coefficients of the same
powers of l̄ and x, respectively, (of course the other way
around would work equally well) one obtains

−1
2
U (0)

′

− 1
2
U (0)U (0) + v(0) = 0, (34)

U (0)
′

(x) = D1,0; D1,0 = −w, (35)

and integration over x yields

U (0)(x) = −wx. (36)

Similarly,

−1
2

[U (1)
′

+G(0)
′

]− U (0)U (1) − U (0)G(0) + v(1) = 0,

(37)

U (1)(x) = 0, (38)

G(0)(x) = C0,0 + C1,0x
2, (39)

C1,0 = −B1

w
, (40)

C0,0 =
1
w

(C1,0 + 2β + 1), (41)

B1 = −2 +
q5
o

6Q
d3V (qo)

dq3
o

, (42)

− 1
2

[U (2)
′

+G(1)
′

]− 1
2

2∑
n=0

U (n)U (2−n) − 1
2
G(0)G(0)

−
1∑

n=0

U (n)G(1−n) + v(2) =
β(β + 1)

2
+ λ

(0)
0 , (43)

U (2)(x) = D1,2x+D2,2x
3, (44)

G(1)(x) = 0, (45)

D2,2 =
1
w

(
C2

1,0

2
−B2), (46)

D1,2 =
1
w

(
3
2
D2,2 + C0,0C1,0 −

3
2

(2β + 1)
)
, (47)

B2 =
5
2

+
q6
o

24Q
d4V (qo)

dq4
o

, (48)

λ
(0)
0 = −1

2
(D1,2 + C2

0,0) (49)

and so on. Thus, one can calculate the energy eigenvalue
and the eigenfunctions from the knowledge of Cm,n and
Dm,n in a hierarchical manner. Nevertheless, the pro-
cedure just described is suitable for systematic calcula-
tions using software packages (such as MATHEMATICA,
MAPLE, or REDUCE) to determine the energy eigen-
value and eigenfunction corrections up to any order of the
pseudoperturbation series.

Although the energy series, equation (8), could appear
divergent, or, at best, asymptotic for small l̄, one can still
calculate the eigenenergies to a very good accuracy by
forming the sophisticated [N,M + 1] Padé approximation

PM+1
N (1/l̄) =

(P0 + P1/l̄+ · · ·+ PM/l̄
M)/(1 + q1/l̄+ · · ·+ qN/l̄

N)

to the energy series [23]. The energy series, equation (8),
is calculated up to E(8)

0,l /l̄
8 by

E0,l = l̄2E
(−2)
0,l +E

(0)
0,l + · · ·+E

(8)
0,l /l̄

8 +O(1/l̄9), (50)

and with the P 5
4 (1/l̄) Padé approximant it becomes

E0,l[4, 5] = l̄2E
(−2)
0,l + P 5

4 (1/l̄). (51)

3 Quartic anharmonic interactions

Let us consider the phenomenologically useful and me-
thodically challenging quartic anharmonic interactions

V (q) = αoq
2 + αq4 (52)

of Hamiltonian (1). Equation (22) then reads

w =

√
8αoqo + 24αq3

o

2αoqo + 4αq3
o

, (53)

and equation (20) yields

l +
1
2

(
1 +

√
8αoqo + 24αq3

o

2αoqo + 4αq3
o

)
= q2

o

√
2αo + 4αq2

o. (54)

In the absence of a closed form solution for qo in (54),
one should appeal to some software packages (MAPLE is
used here) to resolve this issue. Of course there is always
more than one root for (54). However, the symmetry of
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Table 1. Eigenvalues from the fifth-order phase-integral method EPIM [5], the pseudoperturbative shifted-l expansion technique
EPSLET, the effect of the [4,5] Padé approximant on our leading energy term E[4, 5], and from the exact numerical calculations [5]
for the three-dimensional anharmonic oscillator V (r) = 1

2 r
2 + 1

2r
4, with nr = 0.

l = 0 l = 1 l = 2
EPIM 2.324 83 4.190 26 6.242 80
EPSLET 2.324 40 4.190 17 6.242 78
E[4, 5] 2.324 41 4.190 17 6.242 78
Eexact 2.324 41 4.190 17 6.242 78

l = 5 l = 10 l = 50
EPIM 13.264 459 9 27.092 492 362 187.529 708 014 021
EPSLET 13.264 458 8 27.092 492 304 187.529 708 014 0025
E[4, 5] 13.264 458 8 27.092 492 304 187.529 708 014 0025
Eexact 13.264 458 8 27.092 492 305 187.529 708 014 003

Table 2. Three-dimensional ground state energies or equivalently one-dimensional first excited state energies for V (q) = q2

2
+αq4.

EBB denotes Bessis and Bessis results [2] and the exact ones Eexact, reported therein, for different anharmonicities.

α EPSLET E[4, 5] EBB Eexact

0.002 1.507 41940 1.507 41940 1.507 4194 1.507 41939
0.006 1.521 80570 1.521 80570 1.521 8057 1.521 80565
0.01 1.535 64844 1.535 64846 1.535 6483 1.535 64828
0.05 1.653 439 1.653 439 1.653 441 1.653 43601
0.1 1.769 512 1.769 625 1.769 529 1.769 50264
0.3 2.094 678 2.094 640 2.094 795 2.094 64199
0.5 2.324 401 2.324 407 2.324 661 2.324 40635
0.7 2.509 16 2.509 23 2.509 56 2.509 22810
1 2.737 73 2.737 91 2.738 32 2.737 89227
2 3.292 48 3.292 94 3.293 50 3.292 86782
50 8.913 21 8.916 61 8.917 41 8.915 09636
200 14.056 17 14.062 53 14.062 96 14.059 2268
1000 23.966 93 23.978 93 23.978 63 23.972 2061
8000 47.880 19 47.890 95 47.903 66 47.890 7687
20000 64.972 32 65.006 64 65.004 18 64.986 6757

Table 3. Three-dimensional ground state energies or equivalently one-dimensional first excited state energies for V (q) =
−aq2/2 + q4/2. EPVM represents the results from perturbative-variational method [6].

a EPVM EPSLET E[4, 5]
1 2.834 5 2.835 3 2.834 4
5 −3.250 68 −3.250 85 −3.250 84
10 −20.633 55 −25.633 69 −20.633 50
15 −50.841 387 −50.841 42 −50.841 42
25 −149.219 456 −149.219 454 −149.219 454
50 −615.020 090 9 −615.020 091 0 −615.020 091 0
100 −2845.867 880 34 −2485.867 880 337 −2485.867 880 337

the problem in hand along with equation (19) would sin-
gle out one eligible root qo as a minimum of E(−2). Once
qo is determined the coefficients Cm,n and Dm,n are ob-
tained in a sequential manner. Consequently, the eigenval-
ues, equation (50), and eigenfunctions, equations (30–32),
are calculated in the same batch for each value of αo, α,
and l.

Our results (Tabs. 1–3) are obtained from the first
eleven terms of our energy series (50). Also, the effect of
the [4,5] Padé approximant on the leading term l̄2E(−2)

is reported as E[4, 5]. In Table 1 we list our results along

with the exact numerical ones and the (best estimated)
eigenvalues obtained from the fifth-order phase-integral
method (PIM) reported by Lakshmanen et al. [5]. Ob-
viously, our results compare excellently with the exact
numerical ones and surpass those from PIM. Whilst
the [4,5] Padé approximant had no dramatic effect on the
energy eigenvalues for l = 0, it had no effect on the energy
eigenvalues for l ≥ 1. A common feature between PSLET
and PIM is well pronounced here; the precession of both
methods increases as l increases.

Again we proceed with the theoretical laboratory (52)
and examine the validity of PSLET over a wide range of
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anharmonicities for V (q) = q2/2 + αq4. In Table 2 we list
our results for the three-dimensional (3D) ground states
energies, or equivalently for the one-dimensional (1D) first
excited state energies. The results of Bessis and Bessis [2],
via an open perturbation recipe, and the exact ones [24],
using Bargman representation, are also displayed. Clearly
and satisfactorily, the trend of the exact values of the en-
ergies is reproduced.

Finally, we consider the ground state energies of the 3D
single-well, or equivalently the first excited state energies
of the 1D double-well, potentials V (q) = −aq2/2 + q4/2.
We compare our results (Tab. 3) with those obtained by
Saavedra and Buendia [6] via a perturbative-variational
method (PVM). They are in excellent agreement not only
with the PVM but also with the hypervirial perturbation
method [25], especially for deep wells.

4 Concluding remarks

The method (PSLET) just described is conceptually
sound. It avoids troublesome questions such as those per-
taining to the nature of small-parameter expansions, the
trend of convergence to the exact numerical values, the
utility in calculating the eigenvalues and eigenfunctions
(in one batch) to sufficiently heigher-orders, and the ap-
plicability to a wide rang of potentials. Provided that the
latter is analytic and give rise to one minimum of E(−2)

and an infinite number of bound states.
On the computational and practical methodology

sides, PSLET comes in quite handy and very accurate nu-
merical results are obtained. Nevertheless, if greater accu-
racy is in demand, another suitable criterion for choosing
the value of the shift β, reported in [13,25], is also feasi-
ble. However, one would always be interested, for practical
exploratory purposes, in the conventional wisdom of per-
turbation prescriptions that only a few terms of a “most
useful” perturbation series reveal the important features
of the solution before a state of exhaustion is reached. Our
method indeed belongs to this category where the results
of the illustrative challenging examples used bear this out.

On the other hand, asymptotic wavefunctions emerge
in our procedure from the knowledge of Cm,n and Dm,n

to study, for example, electronic transitions and multipho-
ton emission occurring in atomic systems. Such studies
already lie beyond the scope of our present methodical
proposal.
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